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ABSTRACT 

Background 

While searches for life usually focus on a planet’s distance from its star, moons like Europa 
prove that gravitational squeezing or tidal heating can create habitable oceans far outside that 
traditional zone. This study analyzes the NASA Exoplanet Archive to find exoplanets that are 
most likely to have habitable exomoons. 

Methods 

Using Python, I filtered the archive for large planets at safe distances from their host stars to 
ensure they could hold onto moons. A physics model calculated the temperatures from starlight 
and tidal heat, while a random forest AI predicted if the orbits were stable. 

Results 

The model identified that tidal heating contributed 5% to 18% of the energy for top exomoon 
candidates. I found that a perfect temperature does not guarantee orbital stability. TOI-2088 b 
ranked highest, balancing habitability (0.93) with stability (0.95). 

Discussion 

Tree-based AI models (random forest and gradient boosting) were the most consistent, even 
when I changed hyperparameters. Changing the orbital paths showed little variation in the 
surface temperatures of exomoons, suggesting starlight was the main heat source. This study 
concludes that Kepler-62 f and TOI-2088 b were the best targets for the James Webb Space 
Telescope to study for potential exomoons. 

INTRODUCTION 

Frequently viewed as just the study of stars, astronomy is also an important tool for solving 
mysteries of how life might survive in different parts of the universe [1]. For decades, the main 
approach for finding habitable worlds was to find the “goldilocks zone” or “habitable zone” 
around a star [1]. This area is a specific distance from the main star where temperatures are just 
right for liquid water to exist on a planet's surface [2]. However, our own solar system proves 
that being “just the right distance” isn't the only way for a world to be habitable [2]. Moons like 
Europa and Enceladus exist far outside the habitable zone yet they have huge oceans of liquid 



water hidden underneath thick ice [3]. These oceans are present due to tidal heating which is 
determined in this study using the analytical constant Zs to calculate the internal thermal energy 
[4,5].  
 
In these cases, research has found out that tidal heating, which is caused by friction created when 
the gravity of giant planets pulls and squeezes a moon during its orbit can be significant [6,7]. 
However, it is important to note that for tidal heating to stay active for billions of years the planet 
must have multiple moons to create resonant orbits [8]. The model calculates how the tidal 
friction combines with stellar radiation to create a stable thermal balance [4,5]. With the launch 
of the James Webb Space Telescope (JWST), scientists can now study distant planets and collect 
data with accuracy [9,10]. This study uses photometric data from the NASA Exoplanet Archive 
to find potential candidates across thousands of systems [11,12]. A Random Forest Classifier 
machine learning model is used to determine if the exoplanet data is not just stellar noise [9,10]. 
This Artificial Intelligence (AI) specifically gave a "Priority Score” to confirm orbital stability 
inside the habitable zone [13-15]. 
 
This study calculates a moon’s total energy by adding the energy the moon receives from 
starlight and tidal heat [4,5].  This calculation determines if a moon falls within the habitable 
edge where its temperature is not too hot or too cold and water can exist in liquid form [4]. The 
hypothesis is that moons can be habitable if they have the potential for liquid water to exist if 
they have temperatures between 273 K and 373 K [16,17]. In addition, to deal with the 
uncertainty in exomoon atmospheric compositions and greenhouse effects, this study uses a total 
radiation level of 100-450 W/m2 as the limit for keeping water liquid [16]. This research aims to 
identify exomoons that can potentially support life by looking through data from thousands of 
planets in the NASA Exoplanet Archive, using physics and machine learning [18,13]. The final 
results provide a list of exoplanets that are most likely to have habitable exomoons that can be 
studied further. 

METHODS 

Research Goals and Approach 

Due to the small size of exomoons, current telescopes cannot directly see these moons [19,20]. 
Therefore, physics rules and ML will be used to identify exoplanets that are likely to have moons 
from the NASA exoplanet archive [11]. If the moon’s surface temperature is in the range 
between 273 K and 373 K, then it might have liquid water and is considered habitable [16]. To 
find the moon’s surface temperature, the total heat it receives from the star, the planet and tidal 
heating is calculated. [4,5] This work will be done in Google Colab using Python to process 
thousands of planet’s data from the NASA Exoplanet Archive. 



Data Steps and Energy Models 

Using the NASA Exoplanet Archive, information on thousands of planets will be collected. The 
dataset will be cleaned by removing planets with missing information [21]. To keep the system 
stable, the Stability Cascade filter is used [18,22]. Only planets with mass greater than 10 earth 
masses are chosen because they have enough gravity to keep the moons in stable orbits [4,18]. 
Also, only planets with an orbital distance between 0.4 AU and 2.5 AU are chosen to make sure 
the star’s gravity doesn’t pull the moons away [18,22]. Large mass planets will also be capable of 
having multiple moons which increases the likelihood the orbits are eccentric, which are needed 
for tidal heating [8,22]. Then, the total energy for each exomoon will be calculated by adding the 
radiative heat from the star, reflective heat from the planet and internal heat (tidal heat) caused 
by the planet’s gravity stretching and squeezing the moon [2,4-6]. 

Machine Learning and Habitability Ranking 

Random Forest ML will be used to analyze the NASA exoplanet data to separate real exoplanets 
from data noise using stellar properties [11,13]. This AI model analyzes which of the physical 
traits, like distance or mass, most strongly link to stability [14,15]. Google Colab will be used to 
do the necessary calculations. The result is a ML stability score for each planet which represents 
the AI’s confidence that a specific exoplanet can actually hold onto a moon for millions of years 
without gravity pulling it apart. The result is refined to include only moons with surface 
temperature between 273 K and 373 K [22]. The habitability score ranks exoplanets with 
potential exomoons by how much their temperatures resemble Earth’s baseline of 288K [23]. 
The final result is a ranking of exomoons that have a high probability of being habitable and 
stable without being destroyed by its host star. 
 



 
Figure 1: Exomoon Stability and Habitability Analysis Pipeline 
 
Figure 1 shows the Exomoon Habitability Analysis Pipeline. It shows the step by step procedure 
of the research analysis, from getting data from NASA Exoplanet Archive to the final ranking of 
habitable exomoons using Python and ML. 

RESULTS 

Population Selection and Model Output 

The research identified potential candidates based on model constraints and calculated the 
potential exomoon’s surface temperature. Figure 2 shows the relationship between these 
selection inputs and the resulting model output. 
 
Selection Filters (Inputs): The left and the middle graphs represent the main filters used on the 
NASA Exoplanet Archive. The gravity filter (left graph) identifies all host planets that meet the 
requirement, greater than 10 Earth mass ensuring they have enough gravity to keep a moon in 
orbit. The safety zone filter (middle graph) checks the orbital distance of these host exoplanets 
and is used to find candidates that are between the 0,4 and 2,5 AU orbital range to make sure 
their moon won’t be pulled away by the star’s gravity. 
 
Thermal Profile (Output): The graph on the right shows the exomoon’s surface temperature 
calculated for the candidates by looking at the stellar luminosity and planet moon gravitational 



data. The graph shows that most of the moons are found near 280 K to 300 K, indicating that the 
selection filters successfully found a population of moons capable of having liquid water. 
 

 
Figure 2: Multi Variable Selection Criteria for Exomoon Habitability: Gravitational and Orbital 
Distributions with Thermal Output 

Habitability and Stability Mapping 

Figure 3 shows the relationship between the calculated thermal results and the predicted orbital 
stability. The habitability score (green means it is close to Earth's 288 K) finds exoplanets that 
can have exomoons with Earth like climates. The size of the dots indicates the ML stability 
score. This helps filter for exoplanets that can potentially keep their moon in a steady orbit over 
millions of years. The exoplanets with high habitability sources and high ML stability are labeled 
on the figure. These are the rare places where it is warm enough for liquid water to exist and also 
safe enough for the moon to stay in its orbit.  
 
 



 
Figure 3: Map of Exomoon Candidates. Thermal habitability scores (color) vs Machine Learning 
stability priority (size) 

Combined AI and Physics Model Analysis 

I used a random forest classifier to find what parameters were the best predictors for moon 
stability. In Figure 4, the AI found that orbital distance was the most important with a statistical 
score of 78%. The size and mass of the planet and the star’s heat didn’t influence the moon's 
stability by much. The moon’s thermal energy comes from two primary sources, external stellar 
radiation and internal heating created by tidal flux. For the top candidates, tidal flux contributed 
over 5% of the total thermal energy which shifted some of the moons into the habitable range of 
273K to 373 K. In the case of TIC 4672985 b, tidal flux contributed 18% and provided a 
measurable extra energy boost.  
 



 
Figure 4: Combined Machine Learning and Energy Analysis.  
The top graph shows what are the important factors for moon stability and the bottom graph 
shows a comparison of the different energy sources that keep the moon warm for the prioritized 
candidates. 

Candidate Ranking 

Table 1 shows the data for the most habitable worlds. TOI-2088 b is the highest ranked because 
it has a high habitability score (0.9336) and also a very good stability score (0.9540). 
 
 
 
 



Exoplanet Name  T_exomoon  Temp_diff  ML_priority  Habitability_Score  

TOI-1451 b  290.15 K  2.15  0  1.0000  

TOI-2088 b  295.01 K  7.01  0.954  0.9336  

TOI-4504 c  295.34 K  7.34  0.002  0.9291  

Kepler-62 f  279.91 K  8.09  0.968  0.9189  

TIC 139270665 b  274.29 K  13.71  0.006  0.8421  

HATS-59 b  271.68 K  16.32  0  0.8064  

Kepler-9 b  305.18 K  17.18  0.002  0.7946  

TOI-199 b  305.61 K  17.61  0.942  0.7887  

TOI-7510 b  266.08 K  21.92  0  0.7298  

TIC 4672985 b  264.36 K  23.64  0.016  0.7063  

Table 1: Top 10 Habitable Exomoon Candidates Ranked by Thermal Similarity to Earth 

DISCUSSION 

The Gap Between Temperature and Stability 

The results show that the thermal conditions and orbital stability of the exomoons are not related. 
For example, the model shows that planet TOI-1451 b has the perfect moon temperature of 290 
K for habitability. However, its zero stability score could mean that the moon would not survive 
long term. This is one of the main reasons why machine learning with physics is important to 
help conduct a reliable analysis.  

Limitations: Planetary Flux and Atmospheric Modeling 

One of the main limitations of my model is that the planetary radiative and reflective flux are not 
used when calculating the moon’s total energy. In planetary environments with highly reflective 
gas giants, factors that contribute to the total heating effect include starlight, radiative and 
reflected light from the planet and tidal heating caused by the planet’s gravity and stretched orbit. 
When combined, these sources of heat could increase the surface temperature more than what the 
current model predicts. My model assumed a constant reflectivity of 0.3 and did not include 
atmospheric chemistry. Future versions should include light analysis simulations to find 



greenhouse gases like carbon dioxide and methane. This would improve the accuracy of the 
model and its temperature predictions. 

Reliability and Hyperparameter Analysis 

I ran a sensitivity analysis on the hyperparameters to make sure that the random forest AI results 
were accurate. I modified the number of trees (n_estimators) from 50 to 1000 to test the model. 
The results stayed consistent even though I changed the internal settings. The top three 
candidates, Kepler-62 f, TOI-2088 b and TOI-199 b, did not change with the number of trees I 
used. This shows that the model is reliable. 
 
I also tested my findings using two other AI methods to see if they agreed on which moons were 
stable. The random forest and gradient boosting methods gave the same results, while neural 
networks stability scores were all zero. This is most likely due to the small sample size that 
caused the neural network method to struggle and the results defaulted to zero. The tree based 
models were the best for the sample size and both of them showed the same top three results 
(Kepler-62 f, TOI-2088 b and TOI-199 b). This suggests high confidence in the results. 

Temperature Test (Eccentricity Sensitivity) 

A sensitivity analysis was performed to test if the shape of the moon’s orbit (its eccentricity) 
would change its temperature. Specifically if the moon’s orbit was more oval shaped or less oval 
shaped, does it get proportionally squeezed by gravity to increase or decrease its temperature. I 
halved (0.5x) and doubled (2x) the eccentricity and the results showed that in every single case, 
for the top 10 planets, the temperature stayed the same. For example, the predicted temperature 
of TOI-1451 b stayed at 290.15 K for all the three orbits. This suggests that the stellar flux is the 
main heat source and overpowers any heat created by tidal effects. This test confirms that the 
habitability scores are accurate because stellar flux is the main factor.  

Strategic Target Selection for JWST 

The exoplanets that were identified as targets (using data from NASA Exoplanet Archive) were 
prioritized for analysis. These targets were analyzed for habitable exomoons. We can narrow 
down potential targets by using combined AI and physics models. Currently, these are performed 
using expensive systems like JWST. In this study top candidates are identified (like TOI-2088 b) 
for using specialized tools like JWST’s Near Infrared Spectrograph (NIRSpec) for future studies. 
Using this model to find orbitally stable candidates first, allows us to get the most scientific 
value out of expensive telescope observations. 
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