
 
Integrating FOS-Mediated Transcriptional Dysregulation and PMAIP1/PERK-Dependent 

ER Stress Apoptosis as Potential Biomarkers for Tuberculosis Progression Risk Using 
Bioinformatics 

ABSTRACT 
Background 
Mycobacterium tuberculosis is aerobically transmitted, obligate aerobic bacteria that is widely 
considered a global health crisis that affects nearly a quarter of the population and is the world’s 
deadliest infectious disease. Mycobacterium tuberculosis establishes dormancy in alveolar 
macrophages, remaining asymptomatic for years. It reactivates upon immune suppression, 
causing severe outcomes in HIV patients. Early signs of progression, response variability, and 
specific mechanisms remain unknown. The goal of this study is to investigate and propose 
biomarkers for early signs of progression from latent to active tuberculosis.  
 
Methods 
GEO2R, SR Plot, KEGG, and GO were used to find the top 50 differentially expressed genes 
(DEGs), visualize, and analyze them. GEO dataset GSE189996 was used to find DEGs. This 
dataset used human, alveolar macrophage samples from 28 donors to investigate DEGs 
associated with host response variability. Groups were defined as control versus infected from 
time periods of 2, 24, and 72 hours.  
 
Results   
50 DEGs were identified based on padj, p-value, and stat (Wald Statistic). Thirty were 
upregulated and 20 were downregulated (see figure 2). GO analysis indicated enrichment in the 
biological process ontology, and ER-stress-induced-apoptosis and 
RNA-transcription-dysregulation being the most enriched. KEGG analysis identified MAPK and 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE189996


TNF signaling pathways including TNF, FOS, SIRT1, KLF4, KLF5, HERPUD1, PMAIP1 
(NOVA), and EIF2AK3 (PERK) were top genes and pathways.  
 
Discussion 
We propose that the biomarkers of increased SIRT1 expression and high KLF4:KLF5 as the most 
easily testable biomarkers of progression from latent to active tuberculosis due to being the 
upstream controllers of the proposed mechanisms.  

INTRODUCTION 

Tuberculosis (TB), caused by Mycobacterium Tuberculosis, continues to be a health crisis. 
Glaziou et al.1 states that nearly one quarter of the population worldwide has latent TB infection 
or will develop it, where the bacterium is dormant within the human body in a Ranke complex 
without symptoms and is not contagious. De Martino et al.2 describe active tuberculosis as a 
curable, aerially transmittable disease which can create symptoms of coughing, fevers, pain in 
the chest, etc. They additionally state that the majority of people infected with tuberculosis will 
have inactive tuberculosis, also known as latent or dormant tuberculosis; latent TB has no 
symptoms and can exist within a host for years before showing symptoms, making its 
progression unpredictable. In 2016, TB caused 1.3 million deaths and is the leading infectious 
disease and 10.4 million new cases arose.1  
 
Current tests like Tuberculosis Skin Test 3 and QuantiFERON 4 can detect exposure from TB, but 
the focus of this study is to identify progression risks from latent to active. In a clinical setting, 
QuantiFERON could identify latent TB and an intervention based on genes identified from this 
study could identify progression risks.4 This fixes costly issues in public health systems where 
they are forced to either treat all latent TB individuals which risks overtreating those who won’t 
progress, side effects, and drug resistance or treat none which misses preventable deaths.5 In this 
study, it is investigated which pathways or genes in early M. TB infection can be used to identify 
patients of high risk of progression to active disease from latent within a defined timeframe and if 
these pathways or genes be used for targeted therapies? Moreover, do these signatures reveal 
specific pathways or genes that could be intervened to prevent progression? Because of its 
obligate aerobic nature it infects the lungs which allows it to spread aerobically.2,6 The lipid cell 
wall (mycolic acid) causes it to be acid-fast, which requires the Ziehl-Neelsen gram stain rather 
than normal techniques. Then, M. TB is a facultative intracellular organism, meaning it can live 
in other cells, and more specifically, macrophages. Its cord factor allows it to evade immune 
response, and catalase peroxidase will enable it to resist host cell oxidation. M. TB creates a 
TH-1 response which eventually leaves a Ghon complex, a.k.a the caseating tissue (earlier stage 
of Ranke complex). If M. TB gets reactivated due to immunorepressors, then it will eventually 
lead to bronchopneumonia or spread through the vascular system to other organs in the body.2,6 



Finally, M. TB is found through screening using a TB Skin test (active) or QuantiFERON 
(latent), and if it’s positive, then a Chest x-ray into a sputum sample staining for acid-fast 
bacilli.2,7  
 
Bioinformatics studies compare gene expression profiles using transcriptomics (RNA-seq) and 
they have identified distinct transcriptional signatures that can identify progression from latent to 
active TB. For example, Burel et al.8 have identified blood transcriptomic signatures that can 
identify high risk latent TB individuals based on reactions to chemprophylaxis . These signatures 
usually find upregulated immune and inflammatory pathways which align with the TB skin test 
checking for size of induration.3,8 While transcriptional signatures can stratify latent TB 
progression risk months to years before symptom onset, validated biomarkers currently exist to 
predict progression during the earliest stages of infection. Moreover,  It is also unknown exactly 
how early these signatures can appear, how stable they are, or how influenced they are by other 
factors.2,6,9 Additionally, distinguishing a real signature from unimpactful ones in longitudinal 
data; accounting for variation between patients, especially with TB; and translating complex 
multi-gene signatures into clinically available interventions can be extremely challenging.  The 
goal of this study is to propose genetic mechanisms of infection in order to identify molecular 
signatures in the host which can be used to predict the progression within 72 hours of a latent M. 
TB infection which can allow for more precise interventions for individuals found as high-risk. I 
hypothesize that latent TB individuals who later progress to active disease will exhibit distinct 
gene expression profiles compared to stable non-progressors. This research addresses the 
limitations of what exists currently for TB patients and can possibly fix the inefficiency of current 
latent to active TB treatments overall reducing deaths and optimizing the use of limited 
healthcare resources by focusing on what is most immediately needed.  

METHODS  

In this study, the dataset Alveolar macrophage immunobiology and functional genomics: 
Unlocking human to human variation in host response to M. tuberculosis was collected from 
NCBI GEO2R10 by using the search details: 
 

 ("mycobacterium tuberculosis"[MeSH Terms] OR "Mycobacterium 
tuberculosis"[Organism] OR mycobacterium tuberculosis[All Fields]) AND 
("macrophages, alveolar"[MeSH Terms] OR alveolar macrophages[All Fields]) 

 
Following figure 1, searching this will provide 396 results and the focus of this study was on 
result 18 (where 17 was a follow-up, replication study). Then the 124 samples from dataset 
GSE18999611 was defined or categorized into groups “mtb-2hr” AND “mtb-24hr” AND 
“mtb-72hr” AND “control-2hr” AND “control-24hr” AND “control-72hr.” They were then 
analyzed using the no-code GEO2R bioinformatics tool that uses R programming language in 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE189996


order to generate the venn diagram, volcano plot, and list of differentially expressed genes and 
finally input into SRPlot.  

 
 

Figure 1: Research Methodology of the  steps and bioinformatics used in this study. 
Research method workflow from data collection to functional analysis. Steps include dataset 
collection from NCBI GEO, differential gene expression analysis using GEO2R. Functional and 
pathway analysis of key genes was performed using SR Plot, integrating Gene Ontology (GO) 
and KEGG databases.  

Identification of the Top Differentially Expressed Genes 

To identify the most significant differentially expressed genes, statistical analysis was applied. 
This process used stat, p-value, and padj value to prioritize the most important genes out of 
12381 based on their differential expression across samples. Prioritizing padj, stat, and p-value in 
that order. Stat being the Wald Statistic.  

Data Analysis Using SRPlot, KEGG, and GO Bioinformatics Tools 

Then SRPlot12, KEGG13, and GO14,15 bioinformatics tools and databases were utilized to analyze 
the functions of these top genes. These tools helped uncover the potential roles of the genes in 



Mycobacterium Tuberculosis. SRPlot was used in tandem with KEGG and GO to generate the 
visuals shown in figure 3.  

RESULTS 

Identification of Differentially Expressed Genes  
GEO2R was initially used to identify the top 50 differentially expressed genes (DEGs) out of the 
primary 12381 genes identified from the samples. From the first two results, some genes were 
expressed differently between M. TB infected host cells and controls from all collected time 
periods (see figure 2). The volcano plot (Figure 2) is utilized to quickly identify the most 
meaningful changes in DEGs by combining a measure of statistical significance with the 
magnitude of change. The red dots represent genes which are upregulated, or more expressed; 
blue dots represent genes which are downregulated, or less expressed; and the black represents 
neither, or not significant. From the venn diagram (Figure 2), 1 DEG was common with all time 
periods; 3 were common with the earliest stage, 2 hours, and the latest stage, 72 hours; and 398 
were common with the 24 hour stage and the 72 hour stage.  
 

 
Figure 2: Differentially Expressed Genes: Volcano plot shows gene expression of patients 
infected with mtb versus the control after 72 hours while venn diagram shows the count of shared 
and separate DEGs between every recorded time period.  
 

Identification of 50 Statistically Significant Differentially Expressed Genes  (DEGs) 
 
To identify the top 50 DEGs, the 12381 genes were organized by padj, p-value, and stat. Padj is 
the adjusted p-value statistic, making it more significant.10 Stat, or the Wald Statistic, measures 
the statistical significance of data.10 Out of the top 50 genes selected, 30 of the genes were chosen 

https://docs.google.com/spreadsheets/u/0/d/1F3zSt13ra7cKF7pBWI1lXIesxiLinuftwS1vsc99_YY/edit


with the highest stat value and were upregulated and 20 of the genes with the lowest stat value, 
downregulated, but maintained a padj value < 7.00E-15.  

 
Potential Functions and Enrichment of the Identified Genes and/or pathways 

 
SR Plot was used to visualize and determine the function of genes. ​From the KEGG results, the 
TNF and MAPK signaling pathways were identified as statistically significant due to the high 
presence of top 50 DEGs. KEGG additionally identified TNF, FOS, FOSB, SIRT1, KLF4, KLF5, 
PMAIP1, HERPUD1, DUSP1, IRS2, ODC1, SLC16A1, DUSP2, JUNB, CXCL3, EIF2AK3, and 
GADD45B as significant genes of equal significance in discovered pathways. Out of these genes, 
we identified TNF, FOS, SIRT1, KLF4, KLF5, PAMIP1, HERPUD1, and EIF2AK3 as key 
genes.  
 
The GO results identified the regulation of endoplasmic reticulum stress-induced intrinsic 
apoptosis signaling pathway and positive regulation of pre-miRNA transcription by RNA 
polymerase II as the most major biological process pathways. GO results were analyzed in 
tandem with genes identified from KEGG to find related potential functions and genes.  
 
 
 



 
 
 
 
 
 
Fig. 3 
Functional pathway and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment 
analysis of top 50 differentially expressed genes (DEGs) for Mycobacterium Tuberculosis. GO 
Bar plot of Biological Processes (BP), Molecular Functions (MF), and Cellular Components 
(CC) of upregulated DEGs (A), Bubble plot of upregulated DEG-enriched biological processes 
(B), KEGG Cnet plot of upregulated DEGs (C), and KEGG Pathway of the TNF signaling 
pathway (D) via SRPlot.   



DISCUSSION: 

Summary of Findings:  
The goal of this research was to identify molecular signatures in the host which can be used to 
predict the progression from latent to active TB which can allow for identifying high-risk 
individuals. GEO2R Analysis, gene ontology, and KEGG found the biological processes of the 
regulation of endoplasmic reticulum stress-induced intrinsic apoptotic signaling pathway and 
positive regulation of pri-mRNA transcription by RNA polymerase II as the most enriched and 
statistically significant processes. Gene ontology (GO) identified apoptosis and positive 
regulation of mRNA transcription as the two most enriched biological processes, and the CNET 
plot provides associated genes: 

 
Positive regulation is associated with FOS, KLF5, KLF4, and TNF.  
ER stress-induced Apoptosis is associated with PMAIP1, EIF2AK3, 

HERPUD1, and SIRT1.  
 

Positive regulation of miRNA transcription is defined as any process that activates or increases 
the frequency, rate or extent of microRNA (miRNA) gene transcription.16 The apoptotic signaling 
pathway in response to ER stress is the series of molecular signals in which an intracellular 
signal is conveyed to trigger the apoptotic death of a cell. The pathway is induced in response to 
a stimulus indicating endoplasmic reticulum (ER) stress, and ends when the execution phase of 
apoptosis is triggered. ER stress usually results from the accumulation of unfolded or misfolded 
proteins in the ER lumen.17 FOS, KLF5, and KLF4 are all transcription factors. However, KLF5 
and KLF4 are Kruppel-like factors which are associated with colorectal cancer. KLF4 acts as a 
tumor suppressor and KLF5 acts as an oncogene.18 These genes are also in the MAPK signaling 
pathway.19 TNF plays a crucial role in inflammation, the TNF signaling pathway, and the MAPK 
signaling pathway.20,21 PMAIP1 or Noxa helps induce cell death.22,23 PERK (EIF2AK3) and 
HERPUD1 are used for ER stress response, inhibiting translation and removing misfolded 
proteins respectively.24 SIRT1 is involved in a lot of processes as it deacetylates, but importantly 
it helps cells adapt to oxidative pressures, like HERPUD1, and is shown to have 
anti-inflammatory properties.25-27 

 
Interpretation of Results:  
In the RNA Polymerase II process, FOS and KLF5 seem to override28,29 KLF4’s30,31 
tissue-protective signaling which causes immune polarization failure. FOS would continue 
unregulated and cause an influx of cytokine production. A high-risk signature would be a certain 
ratio of upregulated FOS and KLF5 to downregulated KLF4 (high KLF5:KLF4 ratio). In the ER 
stress-induced pathway, SIRT1 is likely deacetylating p5332, which induces PMAIP1, and 
suppressing apoptotic pathways, causing PERK hyperactivity. This leads to chronic stress 
memory in macrophages leading to a heightened inflammatory response upon subsequent 
stimulation, even without the original stressor.33 Moreover, SIRT1 and PERK are likely making a 
pro-stress cellular environment34 in latent TB, which prevents PMAIP1 driven apoptosis. In this 
case, latent TB patients with upregulated SIRT1 and PERK in monocytes can be tested for 



progression to validate this biomarker. Finally, TNF is possibly in a feedback loop where it 
induces FOS35 to bind to the TNF promoter, which creates more TNF, overall fueling an 
apoptosis blockade via SIRT1. An important biomarker would be high TNF, FOS, and SIRT1 
indicating a very high-risk individual. ​
 
Table 1: Summary of Results 

Hypothesized 
process 

Function Involved 
genes/pathways 

Biomarkers 

RNA Polymerase II 
Process 

●​ Immune 
polarization failure 

●​ Increased cytokine 
production 

●​ FOS 
●​ KLF5 
●​ KLF4 

High KLF5 to KLF4 
ratio. Upregulated 
KLF5 and FOS.  

ER Stress-induced 
Apoptosis Process 

●​ SIRT1 deactivates 
PMAIP1 and 
therefore apoptotic 
pathways 

●​ PERK (EIF2AK3) 
hyperactivity 

●​ Macrophages tire 
out 

●​ Increased 
inflammatory 
response 

●​ Stress is increased 

●​ SIRT1 
●​ PMAIP1 
●​ EIF2AK

3 

Upregulated SIRT1 
and PERK. 
Downregulated 
PMAIP1.  

TNF Feedback Loop 
Process 

●​ TNF induces FOS 
to bind to TNF 
promoter which 
makes more TNF 

●​ Metabolic stress 
activates SIRT1 

●​ SIRT1 ER 
Stress-induced 
Apoptosis Process 
occurs  

●​ TNF 
●​ FOS 
●​ SIRT1 
●​ PMAIP1 
●​ EIF2AK

3 

Upregulated TNF, 
FOS, and SIRT1. 
Increased TNF 
promoters. Indicates 
an extremely 
high-risk of 
progression.  

 
Comparison with Previous Studies:  
 

ER Stress-induced Apoptosis Process 
 



M TB infection inhibits apoptosis by upregulating factors like Mcl-1 which are anti-apoptotic 
and suppresses PMAIP1-mediated cell death. This aligns with Simper et al.36 findings that M. TB 
induces PPARγ expression, leading to macrophage survival and bacterial persistence. PERK ER 
stress responses are critical in TB pathogenesis as studies32,,37 confirm that chronic ER stress in 
macrophages creates a “stress memory” which allows for bacterial survival and granuloma 
necrosis. SIRT1 deacetylating pro-apoptotic proteins and blocking mitochondrial apoptosis is 
consistent with TB models37,38 showing SIRT1 overexpression promoting bacterial reservoirs by 
inhibiting infected cell death.  
 

RNA Polymerase II Process and TNF Feedback Loop Process 
 

Herta et al.31 support the link between KLF4 and KLF5 and the development of increased 
cytokines due to their opposing roles in inflammation and immune regulation. Wang et al. 39 
support the increased attention in M. TB therapies to TNF receptors and FOS related genes 
suggesting and backing up their importance in the RNA Polymerase II process. ​  

 
Implications:  
By identifying similarities between the infection of TB to the progression of latent to active TB, 
the genes and pathways identified in this study can serve as pre-72 hour biomarkers to stratify 
patients by risk of progression and be utilized in clinical tests. By doing so, clinical resources can 
be more effectively allocated to patients as excessive testing and repetitive screening can be 
avoided entirely and look to decrease global cases of TB as less patients will be infected.  

 
Limitations:  
In our case, since we use bioinformatics datasets from RNA-seq experiments conducted by other 
researchers, one limitation is that the identified genes will need to be further studied in the 
laboratory or clinical environment before developing any interventions. Additionally, the chosen 
dataset was of a low sample size in Ohio and Texas and only validated by a single follow up 
study in South Africa, which although proves statistical significance it loses its effectiveness due 
to the extremely high variability of TB infections on hosts. Of course, the proposed mechanisms 
are hypothetical and have limited clinical validation and require further testing to validate. 
Finally, the chosen dataset was of non-infected cells derived from donors versus infected cells. 
Therefore, the proposed mechanisms in this study are only valid if similar mechanisms can be 
found from infection of TB and progression of TB.   
 
Future Directions:  
Studies can be conducted to identify similar mechanisms in infection of TB and progression of 
TB, which when compared to the results of this study can find proposed mechanisms which work 
most effectively. The mechanisms of the proposed processes and biomarkers can be further 



researched to confirm the logistics of them. Then, clinical trials can be conducted to identify if 
the proposed biomarkers are conducive of the progression of TB. Specifically, we would 
recommend to focus on SIRT1 activity and the KLF5:KLF4 ratio as upstream controllers of the 
proposed mechanisms. They are detectable, mechanistically grounded, and most clinically 
actionable.  
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