
 

ABSTRACT 

Background 

Colorectal cancer (CRC), the second leading cause of cancer-related death, has an increasing rate 

of early-onset cases. Understanding genetic risk factors of CRC through polygenic risk scores 

(PRS) can improve screening methods and reduce this rate, especially with the lack of accurate 

risk prediction tools for non-European populations.  

Methods 

This study seeks to investigate how the distribution of CRC PRS differs across ancestral groups 

and gender in diverse genome datasets. To accomplish this, large genome-wide datasets across 

ancestral groups (European, African, East Asian, South Asian, and Latino) are analyzed by 

matching genetic variants associated with CRC risk with those in the genomic sample dataset.  

Results 

PRS represents the cumulative effect of genetic variants on an individual’s susceptibility to CRC. 

A one-way ANOVA revealed that there was a statistically significant difference in PRS between 

at least two ancestral groups (F(4, 2499)= 25.91, p≈ 0). Tukey’s HSD test found the mean East 

Asian PRS was statistically significantly different compared to other groups (p-values<0.05). 

The PRS distribution differences across gender were insignificant in all ancestral groups (p-

values>0.05).  

Conclusion 

This study improves genetic CRC risk knowledge and emphasizes the need of diverse genetic 

data into risk prediction.

INTRODUCTION 

By analyzing the distribution of Polygenic Risk Scores (PRS) of diverse genomic data from the 

1000 Genomes Project across various ancestral groups, this seeks to explore genetic differences 

across ancestry and gender that influence genetic susceptibility and risk of colorectal cancer 

(CRC) in order to improve risk prediction models. The increasing incidence of early-onset CRC 

highlights the weaknesses of current screening guidelines, stressing the use of improved risk 

prediction models that utilize diverse genetic data. 

Background and Current Methods of Detection  



As the second leading cause of cancer death in the United States, colorectal cancer and 

specifically the rate of early-onset CRC, or colorectal cancer diagnosed before the age of 50, has 

been increasing for the past 20 years [1]. Research has shown that from 1990 to 2016, the 

median age of CRC diagnosis has decreased from 72 to 66 [1]. Now, 1 in 10 of all new CRC 

diagnoses are classified as early-onset [2]. This is detrimental to people with colorectal cancer 

because their survival rates dramatically increase when the cancer is detected and diagnosed 

earlier, as “stage I disease has a five-year survival rate as high as 90%, but stage IV disease has 

a survival rate of less than 10%” [3]. The current CRC screening guidelines recommend starting 

at age 45. For individuals with a higher risk due to family history, screening may start at age 40. 

Nevertheless, this system is inadequate for detecting all cases of early-onset CRC before the 

cancer progresses to an advanced stage.  

Polygenic Risk Scores 

To increase the survival rates, a solution lies in creating risk prediction models trained on large 

genome-wide genetic data and analyzing the Polygenic Risk Score (PRS) of colorectal cancer. A 

PRS is a calculated value that represents an individual’s genetic susceptibility or risk to a specific 

trait or disease based on many genetic factors. PRS gives a method of quantifying an individual’s 

genetic risk based on the cumulative effects of multiple genetic variants.  

However, the majority of genetic research had been distributed unfairly. “Currently, most 

genome-wide association studies only incorporate genetic data from people with European 

ancestry” [4]. Addressing this lack of research would make colorectal cancer screening more 

reliable across ancestries.  

Previous Research 

Currently, there are several investigations being conducted all around the world on specific 

ethnicities, such as East Asian and African populations. For example, researchers at Fred Hutch 

Cancer Center have developed models that incorporate Asian and European genome wide-

association studies of CRC to improve the risk prediction across racial and ethnic populations 

[5]. These models attempt to gap the disparities in genetic research by including diverse genetic 

data, which is key for accurate risk prediction and equitable screening practices. By using large-

scale GWAS data and incorporating genetic variants from multiple populations, these models 

improve the understanding of CRC risk factors and contribute to the development of population-

specific risk prediction tools. For example, researchers from the Division of Cancer 

Epidemiology and Genetics at the National Cancer Institute have said, “Results from simulation 

studies show that multiancestry methods generally lead to the most accurate PRSs in different 

settings” [6].  

Various studies have demonstrated that advanced PRS models can identify a broader group of 

high-risk individuals, which couldn’t have been identified with current screening methods. 

“Based on the LDpred-derived PRS, we are able to identify 30% of individuals without a family 

history as having risk for CRC similar to those with a family history of CRC, whereas the PRS 

based on known GWAS variants identified only top 10% as having a similar relative risk. About 

90% of these individuals have no family history and would have been considered average risk 

under current screening guidelines, but might benefit from earlier screening” [7]. This significant 

improvement in percentage of identified individuals shows the potential positive impacts of more 

comprehensive genetic risk assessments. 



Investigative Goals  

What these investigations have not addressed is how the PRS calculation can show how the 

distribution of genetic risk varies across diverse ancestral groups and across genders within these 

populations. Understanding these variations can inform population-specific risk prediction tools 

and contribute to reducing health disparities in CRC outcomes. The goal of this research project 

is to calculate CRC PRS using diverse genome data and identify patterns in how the distribution 

of PRS varies across ancestral groups and across genders. This study will provide further insight 

into how genetic risk is distributed across ancestral groups and genders. The hypothesis of this 

study stated that if Polygenic Risk Scores (PRS) are calculated for colorectal cancer risk across 

different ancestral groups, the resulting scores will exhibit significant variation between the 

ancestral groups (European, African, East Asian, South Asian, American) represented in the 

diverse genome data, reflecting the genetic diversity and allele frequency differences among 

populations. 

METHODS 

 

Figure 1. An overview of the research project procedure: First, colorectal cancer genomic data 

from 1000 Genomes will be compiled together and preprocessed. With this data, the PRS is 

calculated, and the distributions of the PRS will be analyzed for patterns. 

Genomic Data Preprocessing  

First, genomic data from the 1000 Genomes Project was obtained by downloading the Variant 

Call Format (VCF) files for each chromosome from the official repository. Preprocessing with 

the VCF files had to be done because the rsID column of the VCF files were empty, which is 

required for matching SNP variants to calculate PRS. Using BCFtools and the provided “all 

variations” file from the 1000 Genomes Project, the SNP rsIDs were annotated into the VCF file. 

BCFtools is a set of command line tools that assist with large-scale genomic analyses and has 

features of indexing and annotating VCF files. Indexing the VCF files is necessary to ensure the 

files contain all of the appropriate resources to allow fast access to specific regions and position 

in the file. This assists the polygenic risk score calculating tool access the data inside the VCF 

file more efficiently and calculate scores even faster. The BCFtools annotation command goes 

into the VCF file and writes in the important information of SNP variant rsIDs. BCFtools 

provides the final indexed and annotated VCF files which are used to calculate PRS.  

Polygenic Risk Score Calculations  



 

Figure 2. A flowchart of the PRS Analysis Process: The process starts by using the SNP 

Weights from previous GWAS Studies and Genomic Data from 1000 Genomes Dataset to 

calculate the PRS with the python program. With the final calculated PRS calculations, the PRS 

Distribution and Percentiles are analyzed with boxplots and distribution graphs.  

To calculate the PRS, inputs from genomic data and CRC PRS weights are required. The 

genomic data was obtained by downloading the VCF files from the 1000 Genomes Project. This 

dataset was diverse, with 2504 individual samples with a demographic of 25% European, 25% 

African, 12.5% South Asian, 12.5% East Asian, and 25% Hispanic or Latin American ancestry. 

Additionally, the CRC PRS Weights file, which consisted of a table of Single-Nucleotide 

Polymorphisms (SNPs) with their effect sizes and reference alleles from previous Genome-Wide 

Association Studies (GWAS), were acquired from the publicly available Polygenic Score (PGS) 

Catalog. GWAS are observational studies that have identified associations between genetic 

variants, like SNPs, and traits such as CRC. The Polygenic Risk Scores were calculated using a 

publicly sourced python program, which used the Weights file and VCF file as inputs. rsIDs 

from the Weights file are matched and processed with rsIDs in VCF files, then summed in the 

PRS calculation. The python program used the following equation.  

 

Figure 3. PRS Calculation Formula in PLINK: In this formula, the effect size of the SNP i is Si; 

the number of effect alleles observed in sample j is Gij; the ploidy of the sample is P (is generally 

2 for humans); the total number of SNPs included in the PRS is N; and the number of non-

missing SNPs observed in sample j is Mj. 

In order to run these calculations faster and more efficiently, the individual samples were split 

into smaller sections. This was done so that scores of one hundred samples would be calculated 

in one run of the program. These smaller sections then allowed the computer to run the program 

up to six times at once, accelerating the calculation process. PRS is calculated for each of the 



twenty-two chromosomes which were analyzed during this study separately, so each individual 

chromosome PRS was added together to generate a PRS Sum Score.  

RESULTS 

To analyze the PRS distribution and percentiles across different ancestral groups, the mean, 

median, variance, standard deviation, and percentiles (25th, 50th, and 75th) were calculated 

using the PRS calculation results separated according to ancestral classification outlined in the 

integrated call samples file from the 1000 Genomes Project's official repository.  

  

Figure 4. Table of PRS Distribution across various population groups.  

From these values, a distribution line graph of PRS across population groups was created. PRS 

across gender within each ancestral group was plotted in separate boxplots.  

 

Figure 5. Line Graph of PRS Distribution across population groups. 



 

Figure 6. Box Plots of PRS Distribution across gender in each population group.  



Figure 5 portrayed promising differences across population groups, so further statistical analysis 

was conducted to determine statistically significant differences. A one-way analysis of variance 

(ANOVA) test at a significance level of 0.05 was conducted to determine whether there is a 

statistically significant difference between the means of the main five ancestral groups or not. 

The conditions of normality, equality of variances, and test power were all met.  

Figure 6 didn’t show promising statistically significant differences across gender within 

population groups, but a T-Test calculation for significance between two sample means was done 

for each ancestral group to ensure this prediction. The conditions of normality, independence, 

and equality of variance were all met.  

 

Figure 7. Table of ANOVA Test results across ancestral groups. 

A one way ANOVA test is particularly helpful when looking at data with more than three groups 

because this test can be used to figure out if at least one or more of the groups’ mean is 

significantly different from the other groups’ means. In this research, this test was used as an 

initial measurement of the means, seeing whether one of the five ancestral groups had a 

statistically significantly different mean than the other groups. The one way ANOVA test 

revealed that, since the P-Value of ≈ 0 is less than the significance level of 0.05, the null 

hypothesis should be rejected. This shows that the difference between the mean PRS across the 

ancestral groups is statistically significant. The F-statistic is 25.91, which is not in the 95% 

region of acceptance (0:2.418). Since the one-way ANOVA has statistically significant results, 

Tukey’s Honestly Significant Difference (HSD) test is done to determine which ancestral groups 

were statistically significantly different from the others. This test is the second part of this 

significance test, and can only provide useful information if the one-way ANOVA test produces 

significant results. Tukey’s HSD Test revealed that the East Asian PRS is statistically 

significantly different from European (p=1.211e-10), African (p=1.026e-10), South Asian 

(p=3.172e-10), and Hispanic and Latin American (p=2.16e-10) PRS.  

 



Figure 8. Table of P-Values from T-Test for Significance across gender within each ancestral 

group.  

A T-Test for significance between two samples means is a test that can verify if the difference 

between two means is significant or not, and in the context of this research, the test was used to 

figure out if the mean PRS values across ancestral groups were statistically significant. The T-

Test for significance between two sample means revealed no statistically significant difference 

across gender in every ancestral group. The p-values of the difference across gender in each 

ancestral group, East Asian (p=0.84), European (p=0.41), African (p=0.73), South Asian 

(p=0.33), and Hispanic and Latin American (p=0.27), were all above the significance level of 

0.05, indicating no significant difference of PRS.  

DISCUSSION 

The hypothesis predicted that if Polygenic Risk Scores (PRS) are calculated for colorectal cancer 

risk across different ancestral groups, the resulting scores will exhibit significant variation 

between the ancestral groups (European, African, East Asian, South Asian, American) 

represented in the diverse genome data was proved correct through data analysis. For the PRS 

distribution across diverse populations, East Asian PRS was proven statistically significantly 

different from than the other  population groups from a one-way ANOVA revealing statistically 

significant difference in PRS between at least two ancestral groups (F(4, 2499)= 25.91, p≈ 0) and 

Tukey’s HSD finding that the mean East Asian PRS was statistically significantly different 

compared to every other group (European (p=1.211e-10), African (p=1.026e-10), South Asian 

(p=3.172e-10), and Hispanic and Latin American (p=2.16e-10)). These results reflect the fact 

that most genetic research with PRS has been conducted with populations of European ancestry, 

as compared with non-European ancestry.  

However, no statistically significant difference across gender was found in any ancestral group 

(p-values>0.05). Boxplots of the distribution of PRS across gender did show outliers in the East 

Asian and African ancestral groups though, which shows signs of differences that could be 

discovered with future research.  

Limitations and Future Steps 

One limitation of this study is the limited dataset. The total sample size includes 2504 

individuals, but when separating the data by ancestral group to analyze differences across gender, 

only 501 samples for each ancestral group, with the exception of 250 samples each of East Asian 

and South Asian ancestral groups,   could be analyzed. In the future, utilizing an even larger 

genomic dataset could assist in outlining more distinct differences across gender specifically. 

Even more diverse datasets with various ethnic groups inside the five main ancestral groups used 

in this study would help improve the applicability of PRS across a wider range of people. 

Additionally, combining PRS with other biomarkers, such as epigenetic markers, could provide a 

more comprehensive risk assessment.  

A Polygenic Risk Score is a risk predictive measure that has great potential for applications in 

personalized medicine. Prevention and treatment strategies on an individual level could be 

improved based on individual genetic risk with this tool.  
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