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ABSTRACT

Background

Breast cancer is a global disease that affects millions of women (those assigned female at birth)
around the world. It is caused by the build-up of cancerous cells in the breast, which can be due
to a number of factors, including radiation, genetic mutations, and oestrogens. Specifically, the
cause of Triple-Negative Breast Cancer (TBNC), a subtype of breast cancer with a low survival
rate, remains unclear to many scientists. To fill this research gap, this study further explored the
effects of optimal medication trials on differentially expressed genes of Triple-Negative Breast
Cancer cells.

Methods

This study used various bioinformatics tools and databases, namely, NCBI GEO, SR Plot, GO,
and KEGG. First, the GEO bioinformatics database was used to find and collect data from GEO
Dataset ID GSE264630, which focuses on paclitaxel-resistant triple negative breast cancer cells
treated with various medications including DMSO and LLY283. The dataset was then divided
into three groups based on these different treatment plans: a control group, the DMSO group, and
the LLY283 group. A GEO2R analysis of this dataset resulted in thousands of differentially
expressed genes (DEGs) that were narrowed down to the top 40 DEGs based on the lowest
p-values. Finally, to determine the functions and associated biological pathways of the top 40



DEGs, SR Plot bioinformatics tool was used to perform gene ontology (GO) and KEGG pathway
analyses.

Results

GEO2R analysis of the GEO dataset resulted in a total of 26,567 genes. Among these genes, 42
were differentially expressed (DEGs) between all the groups. The 40 top DEGs were narrowed
down using the lowest p-values. Some enriched gene ontology terms after the GO analysis
included eicosanoid receptor activity, G protein-coupled peptide receptor activity, peptide
receptor activity, and protein-ADP ribosylase activity. Enriched KEGG pathways included
neuroactive ligand-receptor interaction, alpha linoleic acid metabolism, and linoleic acid
metabolism. Top common genes included LTB4R, LTB4R2, PARP12, PLAG12, and HTT.

Conclusion

Looking specifically at the molecular function of the top genes, such as LTB4R, LTB4R2,
PARP12, and PLAG12, all play different roles in cancer. Some act as tumor suppressors while
others act as inhibitors of biomarkers in cancer cells. Expression of these genes in the TBNC
samples can reveal the effectiveness of the specified treatments.

INTRODUCTION

Breast cancer is the leading type of cancer that impacts 12% of women in the United States.
Around 2.089 million women were diagnosed with breast cancer in 2018 and cases continue to
rise (Smolarz, Beata, et al., 2022). At its core, breast cancer forms from a collection of cells that
turn cancerous and build up to form tumors or masses. Some risk factors include oestrogens, late
menopause, and high concentrations of endogenous oestradiol (Key, Timothy J, et al., 2001).
Approximately 90% of breast cancer cases in women are caused by gene alterations obtained
during their lifetimes. Among many gene mutations, key alterations that form in cancer cells are
in the tumor suppressor genes (BRCA genes) and proto-oncogenes (Advanced Journal of
Chemistry). Breast cancer is subcategorized into three main types based on the molecular
markers for estrogen or progesterone receptors and human epidermal growth factor 2 (ERBB2).
This includes HER2 negative, HER2 positive, and triple-negative, which indicates the lack of all
three standard molecular markers in the tumor cells. This research study focuses on the latter,
triple-negative blood cancer (TBNC) (Breast Cancer Treatment 2), which constitutes fifteen to
twenty percent of breast cancers. Those diagnosed with TNBC typically live for around one year.
(Smolarz, Beata, et al., 2022).



In the past, researchers have used GEO databases as a way to find key biomarkers for breast
cancer. In one particular study, ten Hub genes were identified (PBK, CCNA2, CDCA8, MELK,
NUSAP1, BIRC5, CCNB2, HMMR, MAD2L1, and PRC1) that are overexpressed in cancerous
tissue, specifically from an individual with triple-negative breast cancer (Yang, Kaidi, et al.,
2019). The critical roles these differentially expressed genes play can allow for earlier detection
of breast cancer.

One challenge of Triple-Negative Breast Cancer is that it remains extremely hard to treat due to
the lack of estrogen receptors and HER2 amplification targets. Therefore, scientists are currently
working on creating personalized treatments for patients by focusing on the biomarkers present
rather than the three molecular markers it lacks (Leon-Ferre, Roberto A, et al., 2023). Some
limitations the science community still faces is creating targeted therapies without the target
receptors, like estrogen, progesterone, and HER, present. Triple-negative blood cancer or TBNC
is highly heterogeneous, meaning that it has multiple subtypes with multiple molecular profiles.
The heterogeneity of this cancer requires deep research to formulate more helpful treatments for
patients (Obidiro, Onyinyechi, et al., 2023). Some promising approaches include targeting cancer
energy metabolism and targeting protein to protein signaling. These approaches can be used by
researchers to find novel therapeutics (Chapdelaine et al., 2023). This research aims to bridge
this gap by using bioinformatics to contribute to finding more novel therapeutics.

The goal of this research is to identify differentially expressed genes within a GEO dataset and
determine the potential functions and biological pathways they are associated with as potential
targets for novel therapeutics. It is hypothesized that there will be a significant difference
between gene expression in the control group, DMSO group, and the LLY283 group because
various treatments have been added to the samples. For more context, DMSO or dimethyl
sulfoxide is a pharmaceutical solvent for cell therapies (Hoang, Ba X et al., 2023). LLY283 is a
drug used for antitumor purposes as a inhibitor of protein arginine methyltransferase 5 (PRMT5)
(Feustel, et al., 2022). The dataset used in this study focuses on the role of PRMT5 inhibitors and
other anticancer agents on paclitaxel-resistant triple negative breast cancer cells. The information
can be used to further compare the effects of various medications on triple-negative breast cancer
cells.

As mentioned previously, triple-negative breast cancer is a difficult type of cancer to cure. With
13 in every 100,000 women in the United States being diagnosed (Triple-Negative Breast
Cancer: Facts and Stats), it is important that this specific type of breast cancer is further
explored. Currently, there are not many personalized medication plans that work on
triple-negative breast cancer. For that reason, this research will contribute to important
differentially expressed genes that can point towards optimal medication to target the cancer cells
effectively.



METHODS

Data Collection

The overall workflow of the research is summarized in Figure 1. First, using the NCBI GEO
dataset, we identified a fitting dataset on triple-negative breast cancer. NCBI is a website created
by researchers and programmers to organize public databases of genes, transcripts, and proteins
(http://ncbi.nlm.nih.gov). It provides standard reference sequences and descriptions of different
genes (Pruitt, Kim D, et al., 2024). The data set GSE264630 was chosen, whose primary research
specifically focused on paclitaxel-resistant triple breast cancer. Paclitaxel is a well known
anticancer agent that inhibits tumor growth through the blockage of cell division in the G2 and M
phase (Xu, Xiangwei, et al., 2022). Epigenetic chemical probe screen data uncovered that these
resistant cancer cells are vulnerable to inhibition of protein arginine methyltransferases (PRMTs)
through cell division stabilizing. PRMT5 is known to promote tumor cell growth early on in the
diagnosis (Shailesh, Harshita et al., 2018). For this dataset, researchers conducted
RNA-sequencing on the paclitaxel-resistant cells with PRMT5 inhibitors including LLY283 and
GSK591.

Defining Groups

In order to analyze this dataset, the GEO2R bioinformatics tool was used. This bioinformatics
tool allows individuals to compare two or more groups in the Gene Expression Omnibus (GEO)
series in order to identify patterns in expressed genes and produce analytical graphs (Clough et
al., 2016). Groups were assigned based on the treatment type applied to the cancerous cell. Of
the samples given, 2 samples were defined as controls, 10 samples were defined as the LLY283
group, and 8 samples were defined as the DMSO group. To reiterate, DMSO is an anticancer
drug that inhibits tumor proliferation (Villarroel, Ariana, et al., 2020). Since it is not one of the
treatments that act as PRMT5 inhibitors, it will act as a second control for parts of the analysis.
LLY283, an inhibitor for the PRMT5 protein, is the treatment for the experimental group. It was
decided not to include GSK591 in the analysis as it had less correlation with the other data and
thus could obscure trends. Once the groups were defined, they were analyzed through GEO2R.
This resulted in statistical analysis compiled into graphs and tables as well as a list of the top
differentially expressed genes within the dataset. These results were generated using the R
programming language with pre-programmed AI and ML algorithms (R-script of GEO Dataset).

Narrowing down the Top Differentially Expressed Genes

It is crucial to narrow down the list of top DEGs before putting it into another bioinformatics
tool, such as SR plot (www.bioinformatics.com.cn/srplot). To do this, the raw list of genes in the
dataset and their accompanying information was downloaded into a Google Sheet. The data

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE264630
https://docs.google.com/document/d/1DA_OFMjf_IHUYL30gAP6vkIsS8QOYB8WnFoAVenHeIY/edit?usp=sharing


came with associated p-values, which are important because they describe the probability of the
results happening by chance. Therefore, for data to be more significant, the p-value needs to be
low. The list of DEGs was narrowed down to the 40 genes that had the lowest p-values (ranging
from 2.37E-21 to 2.95E-08) (DEGs for Breast Cancer Study).

Using SR plot Bioinformatics Tool for Gene Ontology Analysis and KEGG Pathway

Once the list was narrowed down to the top 40 (DEGs for Breast Cancer Study), it was inputted
into a bioinformatics tool called SR plot. SR plot is a free online bioinformatics platform used
for data collection and visualization pertaining to enrichment and functional analysis (Tang,
Doudou, et al., 2023). In SR plot, the data was analyzed through the GEO pathway enrichment
analysis for Gene Ontology Analysis and KEGG pathway. Gene Ontology is a bioinformatics
tool used to categorize genes into different groups based on their description/function (“Gene
Ontology Overview.”). The three independent branches are descriptions of the genes’ molecular
function (MF), their location in cellular components (CC), and biological processes (BP) they
contribute to (Dameron, O., Bettembourg, C., Meur, N. L.). Similarly, the KEGG pathway is a
bioinformatics collection of databases with genomes, biological pathways, diseases, drugs, and
substances from the Kyoto Encyclopedia of Genes/Genomes that depict diagrams of processes
like metabolic and signaling pathways (Kegg Pathway Map).

https://shorturl.at/vLf0R
https://shorturl.at/vLf0R


Figure 1. Summary of method steps used in this study. Various bioinformatics databases and
tools were used in this study. NCBI GEO was used to collect data and identify differentially
expressed genes. SR Plot was used to determine the potential gene functions and associated
biological pathways of the key top DEGs.

RESULTS

Differences and similarities between the top DEGs from the GEO2R Bioinformatics Tool on
NCBI

In this study, GEO2R was implemented to highlight the top differentially expressed genes.
Differentially expressed genes (DEGs) are genes that show a statistically significant change in
expression levels, typically measured by mRNA or protein production in microarrays, in
response to varying experimental conditions such as time, temperature, disease state, tissue
location, and other factors. R-script programming pre-programmed by AI and ML was used to
identify top DEGs using GEO2R bioinformatics tools. The R-script used in this study is linked
here: R-script of GEO Dataset

https://docs.google.com/document/d/1DA_OFMjf_IHUYL30gAP6vkIsS8QOYB8WnFoAVenHeIY/edit?usp=sharing


Results in Figure 2 depicts volcano plots showing relationships between the top differentially
expressed genes across the groups. Each dot represents a gene that is expressed differently
between treatment and control groups. The red dots indicate genes that are upregulated and the
blue dots indicate genes that are downregulated when compared with the control. Gray dots are
genes that were expressed the same in both groups.

Between the control group and DMSO, 2,080 DEGs were upregulated and 3,257 DEGs were
downregulated from a total of 5,337 DEGs (Figure 2a). Between the DMSO and LLY283 group,
161 DEGs were upregulated and 391 DEGs were downregulated from a total of 552 DEGs
(Figure 2b). Between LLY283 and control, 31 DEGs were upregulated and 3 DEGs were
downregulated from a total of 34 DEGs (Figure 2c). The overlapping Venn Diagram (Figure 3)
shows common significant genes amongst the different groups with 42 common genes among all
the three groups (control, DMSO, and LLY283). There are a total of 26,567 DEGs in total.

2a) 2b) 2c)

Figure 2. Volcano plots compare the expression of genes between two specific treatment/control
groups. Red signifies upregulation and blue signifies downregulation.



Figure 3. The Venn Diagram describes the common significant genes between the different
treatment groups.

Top 40 DEGs analyzed using SR plot Gene Ontology Analysis

The GO results reveal increased enrichment of biological processes, specifically the positive
regulation of calcium-mediated signaling, and molecular function, specifically icosanoid receptor
activity (Figure 4). Since the molecular function enrichment score is the only one above 3, it will
be focused on in this study. Figure 5 connects significant MF genes with related functions. Gene
PARP12 connects to protein- ADP ribosylase activity. Gene PLA2G12A is associated with
calcium-dependent phospholipase A2 activity. Gene GSTM4 is related to carbon-sulfur lyase
activity, oligopeptide binding, and glutathione binding. Gene HTT is associated with profilin
binding and dynactin binding. Gene LTB4R is connected to icosanoid activity, G protein-coupled
peptide receptor activity, and peptide receptor activity. Gene LTB4R2 is connected to G
protein-coupled peptide receptor activity and peptide receptor activity.



Figure 4. Biological process (BP), cellular component (CC), and molecular function (MF) are
the three ontologies on this graph. It shows that the top 40 DEGs are the most enriched in BP and
MF . The enrichment score threshold was 3 or above.



Figure 5. Cnet plot that connects key genes and their relation to significant activities and
functions. This plot focuses specifically on molecular function. Gene PARP12: protein- ADP
ribosylase activity. Gene PLA2G12A: calcium-dependent phospholipase A2 activity. Gene
GSTM4: carbon-sulfur lyase activity, oligopeptide binding, and glutathione binding. Gene HTT:
profilin binding and dynactin binding. Gene LTB4R: icosanoid activity, G protein-coupled
peptide receptor activity, and peptide receptor activity. Gene LTB4R2: G protein-coupled peptide
receptor activity and peptide receptor activity.



Figure 6. In this dot plot on molecular function ontology, blue/purple dots indicate insignificant
data due to the high p-value, while big, red dots are considered the most significant. Icosanoid
receptor activity is the only significant molecular function that is enriched in the top 40 DEGs.

KEGG Pathway of Top 40 DEGs

Figure 7 shows that the most enriched pathways are neuroactive ligand-receptor interaction,
alpha-linolenic acid metabolism, and linoleic acid metabolism. Among the three pathways,
neuroactive ligand-receptor interaction is the most enriched with an enrichment score of around
2 (Figure 9). As seen in Figure 8, the main genes involved in the neuroactive ligand-receptor
interaction are LTB4R and GABR.

Specific Gene Analysis through GEO2R

Figures 10, 11, and 12 are all detailed charts on the expression of one particular gene in the
different experimental groups. PLA2G12A is expressed lower in the control group as well as the
LLY283 group and the highest in the DMSO group. The highest expression value is around 27 in
the DMSO group and the lowest expression value is 5 in the LLY283 group (Figure 10). From
the lowest expression of GSTM4 to the highest expression of GSTM4, the groups are control,
LLY283, and DMSO. The highest expression value is around 24.5 in the DMSO group and the
lowest expression value is 5 in the control group and LLY283 group (Figure 11). Figure 12
describes the expression of both LTB4R and LTB4R2. In both cases, DMSO samples have the
lowest expression of the gene and LLY283 groups have the highest. The highest expression value
is 12 and the lowest is 1 (Figure 12a).



Figure 7. The top 40 DEGs are most enriched in neuroactive ligand-receptor interaction.

Figure 8. Pathway enrichment diagram of neuroactive ligand-receptor interaction dealing with
specific genes like LTB4R and GABR.



Figure 9: Neuroactive ligand-receptor interaction most highly enriched in the top 40 DEGs. The
red dots are considered significant while purple/blue are insignificant.

Figure 10. Expression levels of gene PLA2G12A in the samples of the GEO Dataset.



Figure 11. Expression levels of gene GSMT4 in the samples of the GEO Dataset.

12a) 12b)

Figure 12. Expression levels of gene LTB4R and LTB4R2 in the samples of the GEO Dataset.

Supplementary Materials

R Script: R script Used to Generate GEO2R Results
Top DEGs: DEGs for Breast Cancer Study

https://docs.google.com/document/d/1DA_OFMjf_IHUYL30gAP6vkIsS8QOYB8WnFoAVenHeIY/edit?usp=sharing
https://shorturl.at/vLf0R


DISCUSSION

The main goal of this study is to identify top differentially expressed genes that are enriched in
the samples of the GEO dataset, GSE264630. Through GEO2R analysis and SR plot gene
enrichment analysis, we narrowed down the top 40 DEGs to less than 10 genes that were
significant in the samples. Gene ontology revealed the enrichment of molecular function,
specifically with the genes LTB4R, LTB4R2, PARP12, GSTM4, PLA2G12A, and HTT. Further
research into these genes and their related pathways allowed for a further refinement of top
genes.

PARP12 is a tumor suppressor gene that interacts with FHL2, which is one of its functional
partners. Through a study performed by Shao et.al, PARP12 deficiency correlates to a decrease
in FHL2 levels, which promotes the migration and infiltration of hepatocellular carcinoma (Shao,
Changjuan, et al., 2018). It is related to protein-ADP ribosylation activity as a member of the
ADP-ribosyl transferase family. PARP12 works by blocking mRNA translation, typically during
DNA correction, in order to suppress mutations. Therefore, it can also work as a cellular defense
against viral infections (Welsby, lain, et al., 2014). Current research articles find no direct linkage
between PARP12 and a specific type of cancer (Scarpa, Emanuele S., et al., 2013). However, as
the data from Figure 5 suggests, PARP12 does carry a linkage and correlation to breast cancer.

PLA2G12A is another prominent gene in this study. Although there are mixed conclusions from
other studies on this gene, some articles correlate this gene with protection against diet-induced
obesity and insulin resistance (Wu, Min, et al., 2024). In addition, the connected
calcium-dependent phospholipase A2 activity has functions in relation to neurotransmission and
inflammatory signaling (Wang, Shaowei et al., 2022). However, on a less specific level,
phospholipase A2 activity, which involves hydrolyzing of phospholipids and releasing of fatty
acids and lysophospholipids, plays a role in colorectal cancer. Lower expression of PLA2G12A
in this study led to tumor growth and recurrence (Parisi, Eva et al., 2023). Figure 10 shows the
lower expression of the gene in the control group, which is the untreated cancer cell, and the
higher expression of the gene in the treatment groups. Since deficiency means greater tumor
growth, the graph shows the treatment plans working, especially DMSO as the anticancer agent.
Compared to LLY283 samples, DMSO samples had drastically higher levels of PLA2G12A,
meaning less tumor growth overall.

Past studies indicate a strong association between GSMT4 and a type of bone cancer called
Ewing’s sarcoma. This gene creates proteins that play an important role in drug resistance.
Lowered amounts of GSTM4 result in an increased susceptibility of the cancer cells to anticancer
agents (Luo, W et al., 2009). Figure 5 shows an association of carbon-sulfur lyase activity,
oligopeptide binding, and glutathione binding to GSTM4. Carbon-sulfur lyase activity, which is
defined as the act of an enzyme that breaks a carbon-sulfur bond, does not have much relation to

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE264630


activities of GSTM4 in regards to cancer (“Carbon-Sulfur Lyases-Mesh-NCBI”). Oligopeptide
binding is the binding of the oligopeptide ligand to αvβ3 integrin receptor. This receptor is
overexpressed in tumor cells, so the binding of a ligand to this receptor can increase the
effectiveness of treatment plans and can also reduce possible side effects (“Oligopeptide.”).
Lastly, glutathione is involved with controlling cell differentiation, proliferation, and apoptosis.
Mutations or an increase in glutathione expression is linked to tumor growth (Kennedy, Luke et
al., 2020). Figure 11 shows the approximate levels of GSTM4 genes in the different types of
sample in the GEO Dataset. Based on these results, the control has lower levels, LLY283 has
medium levels, and DMSO has high levels of GSTM4. This contradicts studies that state that
lower levels of GSTM4 typically correlates with effective treatment plans (Luo, W et al., 2009).
If this were the case, then the treatment groups, LLY283 and DMSO would have the lower levels
of GSTM4. However, it must be noted that the correlation between GSTM4 and cancer was
mentioned with Ewing’s sarcoma cells and not breast cancer cells (Luo, W et al., 2009).

Figure 5 indicates the importance of the HTT gene, but there is no direct linkage between this
gene and cancer. HTT is a disease connected to Huntington’s disease, which is a
neurodegenerative disorder (“HTT Huntington''). However, a study describes a possible
unexpected association of HTT and mutant HTT to tumor growth (Thion, Morgane Sonia, et al.,
2018). Interestingly, the mutated HTT gene in Huntington's disease patients creates molecules
toxic to cancer cells and thus leads to 80% less chance of cancer than the normal population
(Shanley, Mathew, 2021). Profilin binding has a role in cell functions and the cell cycle. It is said
to be dysregulated in types of cancer, making it a key biomarker (Thione et al., 2018). Dynactin
binding regulates oncogene expression (Izdebska, Magdalena et al., 2020). However, there is no
indication of whether the HTT gene is mutated or not in the GEO Dataset and therefore, there is
very little clear association between HTT and cancer cells treated with different anticancer
agents.

Lastly, LTB4R and LTB4R2 carry important significance in the samples and therefore breast
cancer cells. LTB4R and LTB4R2 are leukotrienes B4 receptors 1 and 2 that promote metastasis
or cell growth and are involved in tumor development. An earlier study found that TNBC cells
have a lower survival rate in LTB4R expression groups (Kalinkin, A.l., et al., 2019). LTB4R and
LTB4R2 associated pathways include eicosanoid activity, G protein-coupled peptide receptor
activity, and peptide receptor activity. Eicosanoid is especially significant due to its mention in
Figure 4 and Figure 6 in addition to Figure 5. Eicosanoid is a signal molecule that consists of
many essential elements including leukotriene, which is a primary part of LTB4R. It plays a role
in cell differentiation and cell growth, two big parts of cancer (“Eicosanoid.”). As eicosanoids
are elevated in patients with tumors, eicosanoid receptors are appealing therapeutics to work as
anticancer agents (Johnson, Amber M., et al., 2020). Like eicosanoids, g-protein coupled
receptors (GPCRs), which is a type of peptide receptor, play a role in cell proliferation and tumor
metastasis. Overexpression of GPCRs leads to rapid tumor growth (Dorsam, et al., 2007).



Interestingly, the control group and LLY283 group had drastically higher expressions of LTB4R
and LTB4R2 compared to the DMSO group (Figure 12). Moreover, since higher LTB4R/2
expression indicates greater tumor development, the DMSO group seems to be the optimal
treatment plan to most effectively combat this form of cancer.

Table 1. Top differentially expressed genes in the samples that are highly enriched and
significant.

Gene Function Connection

LTB4R/LTB4R2 Promotes cell survival and
proliferation (icosanoid
activity)

Major role in tumor
development

PARP12 Tumor suppressor gene to
fight infections

Protein-ADP riboslyase
activity correlated directly
with mitosis in cancer

PLA2G12A Phospholipase A2 Activity Prognostic Biomarker seen in
Colorectal Cancer

A lot of the information gathered from this study supports existing knowledge found in primary
research articles. In a study of PLAG12A in colorectal cancer, lower expression of the gene led
to greater tumor growth of cancer cells (Parisi, Eva et al., 2023). In the GEO Dataset data
analyzed in this study, Figure 10 shows the low expression of PLAG12A in the control group.
This corroborates the existing study as the control includes uncured TNBC cells, meaning greater
tumor growth. This correlation between the two studies indicates the relevance of PLAG12A in
not only colorectal cancer, but triple-negative breast cancer as well.

The study found that LTB4R, LTB4R2, PARP12, and PLA2G12A are top differentially
expressed genes that play a significant role in TNBC. Evaluating expressions of these genes in
cancer cells can provide researchers with accurate biomarkers to assess the stage and intensity of
the cancer. Inhibitors of these genes, like oligopeptide binding related to GSTM4, can be
explored as potential novel therapeutics to combat the growth of tumors in the breast.

A potential limitation to the information presented in this study is attributed to the strict use of
bioinformatic datasets from other researchers through RNA-sequencing methods. The top
identified genes will need to be further analyzed for understanding their intricate roles in cancer.
Another key limitation was the amount of samples in the groups of the GEO Dataset. There were
only two control samples given as opposed to 8 samples of the DMSO treatment and 10 of the
LLY283 treatment. The imbalance of samples could potentially play a role in skewing the results.



In the future, the four main genes, LTB4R, LTB4R2, PARP12, and PLAG12A, can be tested in
the lab on sample cancer cells with different controls to further identify the roles they play. In
addition, more research needs to be done on HTT and its unexpected relationship to breast
cancer. The HTT gene found in the samples needs to be tested to see whether it is referring to the
mutant HTT gene or the wild type one in order to understand its relevance to the negative effects
of cancer.

Conclusion

Over 26,000 genes from the GEO Dataset samples were narrowed down to the top 40
differentially expressed genes. These top 40 were further refined through gene ontology and
KEGG pathway to four main genes: LTB4R, LTB4R2, PARP12, and PLAG12A. These
significant genes play important roles in cell differentiation, mitosis, and cell proliferation of
tumor cells.

The research conducted to identify the difference in expression of genes between the cancer cells
and the treated cancer cells was depicted through GEO expression results of the aforementioned
four genes. These results showed the differences in amounts of each gene in the samples per
group, indicating the effectiveness of each treatment plan. The study’s hypothesis was that there
will be a difference between gene expression in the control group, DMSO group, and the
LLY283 group, which will allow us to compare the effects of different treatments on
triple-negative breast cancer cells. As hypothesized, the results showed clear distinction between
gene expression levels based on cancer cell growth in comparison to cancer cells receiving
treatment. Further research studies should focus on testing these top four genes in the lab and
investigating the exact relationship between the HTT gene, a gene primarily involved in
Hunington’s disease and breast cancer.
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